Social Choice in Combinatorial Domains

Amrullokhuja Olimov (Amry)

amrullokhuja@gmail.com

21.11.2012

Outline:

- Introduction
- Paradoxical outcomes
- Compact way of preference representation
- Approach in Multi-winner elections
- Summary

A set of alternatives: X={ [, ... }

And the winner was Obama

Voters vote only for one alternative!!!

- How about asking voters to give their preferences for two or more alternatives!!!
- For example, Referendum:
 - # of proposals (new road, church, school ...)
 - Rejected vs. Approved

Let's have a look to a referendum example:

- A set of voters/individuals
- A number of proposals ... (m)
- Approved vs. Rejected
- We get: 2^m

Possible outcomes

Even more ...

• If there **m** seats in a committee

• **n** candidates

- Number of possible outcomes?: m^n
- The number of actual alternatives to consider is at least exponential in **m**

We need :

- Compact way of preference representation
- Methods of defining the outcomes of Multi-Winner elections
 - More effective than explicit way

Definitions

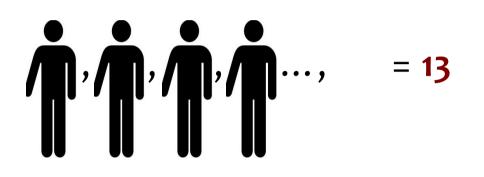
For ease of exposition:

- Consider binary combinatorial domains
 - Each issue takes value=: 1 ("yes") or 0 ("no")
 - Let L be a finite set of such binary issues
 - Each issue $k \in L$ associated with a variable
 - $X_k = \{1, 0\}$

•
$$x_k$$
 means $X_k = 1$

• x'_k means $X_k = 0$

• Voters:



• Binary Issues:

Results:

(1,0,0), (0,1,0), (0,0,1)	3 votes
(1,1,1), (1,1,0), (1,0,1), and (0,1,1)	1 vote
(0,0,0)	0 vote

2.

Using simple majority rule for each issue we get:

7 votes "no": $(0,0,1)_3 + (0,1,0)_3 + (0,1,1)_1$ 6 "yes": $(1,0,0)_3 + (1,1,0)_1 + (1,0,1)_1 + (1,1,1)_1$

- 7 votes "no":
- 6 votes "yes":

7 votes "no":6 votes "yes"

(0,0,0) - winner

Paradox

- Paradox of Multiple Elections
- Why the above example is a Paradox
 - Voter's happiness is proportional to the number of issues her choice coincides
 - (0,0,0) could be reasonable results
- What is Paradox?

Definition

Grandi and Endriss: what is a Paradox?

Integrity Constraint: $X_1 \lor X_2 \lor X_3$

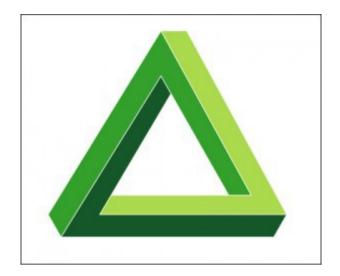
Individual ballots: (0,0,1), (0,1,0)... (1,1,1)

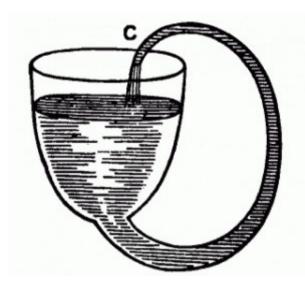
Paradox:

- All individual ballots satisfy given integrity constraints
- But the outcome of election (0,0,0) does not

	Results:					
• 1.	2.	З.				
	(1,0,0), (0,1,0), (0,0,1)	3 votes				
	(1,1,1), (1,1,0), (1,0,1), and (0,1,1)	1 vote				
	(0,0,0)	0 vote				

• The election outcome: (0,0,0)





How to avoid this Paradox???

Avoid The Paradox

An approach:

- Directly vote on combinatorial alternatives:
 - Apply plurality rule to **Example 1:**
 - (1,0,0), (0,1,0) and (0,0,1) are winners by 3 points:
 - Pick a winner by tie-breaking rules
 - Whatever we pick , the paradox is avoided.

Problem

- Not good approach in practice/general
 - It relies excessively on tie-breaking rule
 - 10 issues, 20 individuals
 - Assuming every profile is equally likely to occur
 - Probability that every combinatorial alternatives goes to tie-breaking is very high

Avoid The Problem

- Use other methods rather than plurality rule
- Methods that extract more information from the voters
 - Voters provide complete ranking of all alternatives
 - Recall: Borda count (n)-1 points for first rank,
 - (n)-2 Points for second rank and so on ...
 - But for 10 issues, each voter must rank a total **1024** combinatorial alternatives, which is not realistic requirement.

Modeling preferences

• We have seen several methods to avoid paradoxical outcomes

• Also we have seen how problematic they can be

• The fact is simply getting individual's preferences is challenging

• Model preferences

Languages for Compact Preference Representation

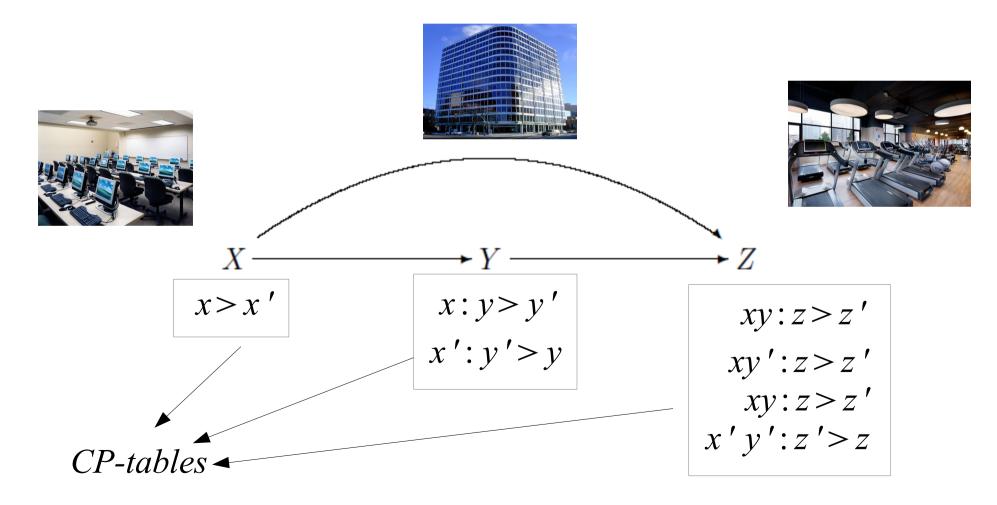
- Formal language used:
 - To express a given class of preference structures
 - Takes less space than explicit representation
- Wanted from voters:
 - Which combinatorial alternatives is acceptable, which is not (dichotomous preference structure)
 - 2 power of 2^m structure
 - Hence, takes 2^m bits to encode structures
- Is one of the major research areas of AI

Compact Preference Representation Language

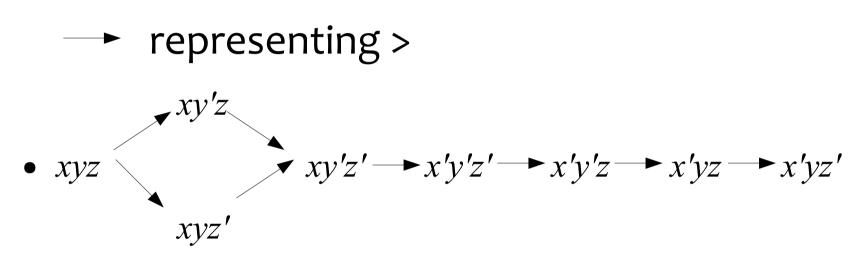
- Conditional Preference Networks {CP-nets}
 - The most widely used
 - Consists of Directed Graph
 - Where nodes are issues (X, Y, Z)
 - Each issue has a table of preferences (x > x')

CP-nets: Example

- Three binary issues X,Y,Z:
- Recall: $x = \{X=1\}$ and $x' = \{X=0\}$



CP-nets generate:



For example xyz' > xy'z' equivalent for saying (1,1,0) is preferred to (1,0,0)

• Note: We can not rank xy'z and xyz'

CP-nets:

- Express a large class of partial orders
 - Even though not all of them

- If the number of variables on which any single variable may depend on, is relatively small
 - Representation in of CP-nets will be relatively compact

Other approaches:

- Using propositional language over variables to express goals
 - Goal:
 - $X_1 \lor X_2$: a goal to accept at least one of the two issues
 - Assign weights/priority to each goal

- Weights/priority - we can represent a wide range of preferences

Weights/Priority:

- Set of weighted goals
 - Utility of Combinatorial alternative is the sum of the weights of goals that are satisfied by that alternative
 - The combinatorial alternative with most sum is picked
- Set of goals labeled with priority levels
 - A combinatorial alternative X is preferred to Y
 - If there exists a level L that for each level of higher priority both satisfy the same number of goals
 - But in level **L** X satisfies more goals

Map:

- Where we are:
 - Compact preference representation

- Where to go:
 - How to use them
 - Find the outcome of Multi-Winner elections

Possible Approaches to Social Choice in Combinatorial Domains

Combinatorial vote:

- The idea:
 - To ask all individuals to express their preferences
 - In terms of a given compact preference representation language
 - To apply a voting rule of choice to those representations

Borda Rule and Prioritized Goals

- Three voters are asked to decide on two binary issues {X and Y}
- The voters express their preferences by giving prioritized goals
 - 1 indicates high priority, and 0 normal priority
- Voters preferences:

Voter 1: $\{X : 1, Y : 0\}$ Voter 2: $\{X \lor \neg Y : 0\}$ Voter 3: $\{\neg X : 0, Y : 0\}$

Borda Rule and Prioritized Goals

Compact representation:

Voter 1: $\{X : 1, Y : 0\}$ Voter 2: $\{X \lor \neg Y : 0\}$ Voter 3: $\{\neg X : 0, Y : 0\}$

Weak orders (Lexicographic interpretation):

Voter 1: x y > x y' > x' y > x' y'*Voter 2:* $x y' \sim x y \sim x' y' > x' y$ *Voter 3:* $x' y > x' y' \sim x y > x y'$

Borda Rule and Prioritized Goals

Applying Borda Rule:

- Can not be applied
 - Linear order
- Generalization of Borda Rule:
 - Alternative gets as many points from other alternatives it dominates

Results

• Weak order

Voter 1:
$$x \ y > x \ y' > x' \ y > x' \ y'$$

Voter 2: $x \ y' \sim x \ y \sim x' \ y' > x' \ y$
Voter 3: $x' \ y > x' \ y' \sim x \ y > x \ y'$

Alternative	Voter 1	Voter 2	Voter 3	Sum:
x y	3	1	1	5
<i>x y'</i>	2	1	0	3
<i>x'y</i>	1	0	3	4
<i>x'y'</i>	0	1	1	2

Combinatorial Voting

- The above example is an illustration of combinatorial voting approach
 - Except transformation of compact into explicit representation
- Full implementation requires:
 - Algorithm for computing Borda winner directly from preferences that represented in prioritized goals
 - No such algorithm exists yet

Sequential Voting

- Is another important approach
 - The idea is:
 - Sequentially vote on each issue (local election)
 - Announce the decision on each issue
 - The simple rule to use for each "local election"
 - Two combinatorial alternatives
 - Rejected vs. Approved
 - The simple majority rule (May's Theorem)

Results on sequential voting

• There is a lot of work and research have been done for sequential voting

• Here we briefly discuss two basic results

Definitions

- A Condorcet Winner :
 - An alternative that would win against any other alternatives in majority contest
 - If it does exists, than we hope that it will be elected
 - (Recall: it does not need to necessarily exist)
- A Condorcet Loser:
 - Is an alternative that would lose against any other alternatives in majority contest
 - If it does exists, than we hope that it does not get elected

First Basic Result

- When:
 - All issues are binary
 - Simple Majority Rule is used in each local elections
 - local voting rule has a property of never electing a local Condorcet loser
 - Then, we will never elect a combinatorial alternative that is Condorcet Loser
- Example: Final local election two combinatorial alternatives left
 - One of them is Condorcet loser, and by assumption on local rule, Condorcet Loser cannot win

Second Basic Result

- Voters express their preferences:
 - CP-nets
 - If the graph specifying them are all acyclic
 - If there exists an ordering of the issues that is compatible with all of them
 - Local Condorcet Winner by local voting rule is elected
 - Whenever there exists an alternative that is Global
 Condorcet Winner, the alternative will be elected

Summary

- Paradox of Multiple Elections
- Compact Preference representation
 - CP-nets
 - Goal based representation language
- Possible Approaches to Social Choice in Combinatorial Domains
 - Combinatorial Voting, (Borda Rule and Prioritized Goals)
 - Sequential Voting
 - Two Basic Results

Thanks for your attention! Any questions?