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Introduction
We have seen:

A set of individuals: N={       ,       ,       ,       ,        ...}

A set of alternatives: X={           ,            , … }

And the winner was Obama  

Voters vote only for one alternative!!!

 



  

Introduction

● How about asking voters to give their preferences for  
two or more alternatives!!!

● For example, Referendum: 

– # of proposals (new road, church, school ...)
– Rejected vs. Approved 



  

Introduction

Let's have a look to a referendum example:
● A set of voters/individuals
● A number of proposals …(m) 
● Approved vs. Rejected
● We get :

Possible outcomes

 

2m



  

Introduction

Even more …
● If there m seats in a committee                                                

 
● n candidates                                                                         

                                                        
● Number of possible outcomes?:   
● The number of actual alternatives to consider is at least 

exponential in m 

mn



  

Introduction

We need :
– Compact way of preference representation
– Methods of defining the outcomes of Multi-Winner 

elections
● More effective than explicit way 



  

Definitions

For ease of exposition:
● Consider binary combinatorial domains 

– Each issue takes value=: 1 (“yes”) or 0 (“no”)
– Let L be a finite set of  such binary issues
– Each issue               associated with a variable    
–           ={1 , 0}

●              means            =1 

●              means            =0      

 

k∈L
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Example: Multi-Winners

● Voters:                                ,       ,       ,       …,        = 13

● Binary Issues:                        ,                    ,                   



  

Example: Multi-Winners

Results:
●  1.                                    2.                              3.

                   

(1,0,0),  (0,1,0),  
 (0,0,1)

3 votes

(1,1,1),   (1,1,0), 
 (1,0,1),  and 
(0,1,1) 

1 vote

(0,0,0) 0 vote



  

Example: Multi-Winners

Using simple majority rule for each issue we get:

  1.                                7 votes “no”:     

                                     6 “yes”: 

                                                                           

  2.                                7 votes “no”:            

                                     6  votes “yes”:                        

  3.                                7 votes “no”:

                                     6 votes “yes”           (0,0,0) - winner

(0,0,1)3+(0,1,0)3+(0,1,1)1

(1,0,0)3+(1,1,0)1+(1,0,1)1+(1,1,1)1



  

Paradox

● Paradox of Multiple Elections
● Why the above example is a Paradox

– Voter's happiness is proportional to the number of 
issues her choice coincides

– (0,0,0) could be reasonable results
● What is Paradox?



  

Definition
Grandi and Endriss: what is a Paradox?

Integrity Constraint: 

Individual ballots: (0,0,1) , (0,1,0) … (1,1,1)

Paradox:
– All individual ballots satisfy given integrity constraints 
– But the outcome of election (0,0,0) does not

X 1∨X 2∨X 3



  

Example: Multi-Winners

Results:
●  1.                                    2.                              3.

● The election outcome: (0,0,0)

                   

(1,0,0),  (0,1,0),  
 (0,0,1)

3 votes

(1,1,1),   (1,1,0), 
 (1,0,1),  and 
(0,1,1) 

1 vote

(0,0,0) 0 vote



  

How to avoid this Paradox???



  

Avoid The Paradox

An approach:
● Directly vote on combinatorial alternatives:

– Apply plurality rule to Example 1:
– (1,0,0) , (0,1,0) and (0,0,1) are winners by 3 points:
– Pick a winner by tie-breaking rules
– Whatever we pick , the paradox is avoided.

 



  

Problem

● Not good approach in practice/general 
– It relies excessively on tie-breaking rule
– 10 issues, 20 individuals
– Assuming every profile is equally likely to occur
– Probability that every combinatorial alternatives goes 

to tie-breaking  is very high



  

Avoid The Problem

● Use other methods rather than plurality rule
● Methods that extract more information from the 

voters
– Voters provide complete ranking of all alternatives 
– Recall: Borda count   (n)-1  points for first rank,
– (n)-2  Points for second rank and so on …
– But for 10 issues, each voter must rank a total 1024 

combinatorial alternatives, which is not realistic 
requirement.     



  

Modeling preferences

● We have seen several methods to avoid paradoxical outcomes

● Also we have seen how problematic they can be

● The fact is simply getting individual's preferences is challenging

● Model preferences 



  

Languages for Compact Preference 
Representation

● Formal language used:

– To express a given class of preference structures
– Takes less space than explicit representation

● Wanted from voters:

– Which combinatorial alternatives is acceptable, which 
is not (dichotomous preference structure)

– 2 power of       structure 
● Hence, takes        bits to encode structures

● Is one of the major research areas of AI 

2m

2m



  

Compact Preference Representation 
Language

● Conditional Preference Networks – {CP-nets}
– The most widely used
– Consists of Directed Graph 

● Where nodes are issues (X, Y, Z)
● Each issue has a table of preferences (x > x')



  

CP-nets: Example
● Three binary issues X,Y,Z:
● Recall:     x ={X=1} and     x' ={X=0}

CP-tables

                 

x>x ' x : y> y '

x ' : y '>y
xy : z>z '
xy ' : z>z '
xy : z>z '

x ' y ' : z '>z



  

CP-nets generate:

Partial Order:

          representing >
              xy'z  

● xyz                        xy'z'       x'y'z'       x'y'z       x'yz       x'yz' 

              xyz'

For example  xyz' > xy'z'   equivalent for saying 

(1,1,0) is preferred to  (1,0,0)
● Note: We can not rank xy'z and xyz' 



  

CP-nets:

● Express a large class of partial orders
– Even though not all of them

● If the number of variables on which any single 
variable may depend on, is relatively small
– Representation in of CP-nets will be relatively compact



  

Other approaches:

● Using propositional language over variables to express goals

– Goal:   

●                  : a goal to accept at least one of the two issues

– Assign weights/priority to each goal 

– Weights/priority  - we can represent a wide range of preferences

X 1∨X 2



  

Weights/Priority:
● Set of weighted goals   

– Utility of Combinatorial alternative is the sum of 
the weights of goals that are satisfied by that 
alternative

– The combinatorial alternative with most sum is 
picked  

● Set of goals labeled with priority levels 
– A combinatorial alternative X is preferred to Y 
–  If there exists a level  L that for each level of 

higher priority both satisfy the same number of 
goals

– But in level L X satisfies more goals 



  

Map:

● Where we are:
– Compact preference representation

● Where to go:
– How to use them 
– Find the outcome of Multi-Winner elections 



  

Possible Approaches to Social 
Choice in Combinatorial Domains

Combinatorial vote:

● The idea:
– To ask all individuals to express their preferences

● In terms of a given compact preference 
representation language

– To apply a voting rule of choice to those 
representations 



  

Borda Rule and Prioritized Goals

● Three voters are asked to decide on two binary 
issues {X and Y}

● The voters express their preferences  by giving 
prioritized goals
– 1 indicates high priority, and 0 – normal priority

● Voters preferences:
                          Voter 1: {X : 1, Y : 0}

                          Voter 2: {X     ¬ Y : 0}

                          Voter 3: {¬ X : 0, Y : 0}

∨



  

Borda Rule and Prioritized Goals

 Compact representation:
                          Voter 1: {X : 1, Y : 0}

                          Voter 2: {X     ¬ Y : 0}

                          Voter 3: {¬ X : 0, Y : 0}

Weak orders (Lexicographic interpretation):
                          Voter 1: x y > x y' > x' y > x' y'

                          Voter 2: x y' ~ x y ~ x' y' > x' y

                          Voter 3: x' y > x' y' ~ x y > x y'

  

∨



  

Borda Rule and Prioritized Goals

Applying Borda Rule:
● Can not be applied

– Linear order 
● Generalization of Borda Rule:

– Alternative gets as many points from other 
alternatives it dominates



  

Results
● Weak order

                          Voter 1: x y > x y' > x' y > x' y'

                          Voter 2: x y' ~ x y ~ x' y' > x' y

                          Voter 3: x' y > x' y' ~ x y > x y'

Alternative Voter 1 Voter 2 Voter 3 Sum:

x y 3 1 1 5

x y' 2 1 0 3

x' y 1 0 3 4

x' y' 0 1 1 2



  

Combinatorial Voting

● The above example is an illustration of 
combinatorial voting approach
–  Except transformation of compact into explicit 

representation
● Full implementation requires:

● Algorithm for computing Borda winner directly 
from preferences that represented in prioritized 
goals

● No such algorithm exists yet   



  

Sequential Voting

● Is another important approach 
– The idea is:

● Sequentially vote on each issue (local election)
● Announce the decision on each issue

– The simple rule to use for each “local election”
● Two combinatorial alternatives 
● Rejected vs. Approved 
● The simple majority rule (May's Theorem)



  

Results on sequential voting

● There is a lot of work and research have 
been done for sequential voting

● Here we briefly discuss two basic results



  

Definitions

● A Condorcet Winner : 
– An alternative that would win against any other 

alternatives in majority contest
– If it does exists, than we hope that it will be elected
– (Recall: it does not need to necessarily exist)

● A Condorcet Loser:
– Is an alternative that would lose against any other 

alternatives in majority contest
– If it does exists, than we hope that it does not get 

elected



  

First Basic Result
● When:

– All issues are binary
– Simple Majority Rule is used in each local elections 

● local voting rule has a property of never electing a 
local Condorcet loser

– Then, we will never elect a combinatorial alternative 
that is Condorcet Loser

● Example: Final local election - two combinatorial 
alternatives left
– One of them is Condorcet loser, and by assumption on 

local rule, Condorcet Loser  cannot win 



  

Second Basic Result
● Voters express their preferences:

– CP-nets
● If the graph specifying them are all acyclic
● If there exists  an ordering of the issues that is 

compatible with all of them
– Local Condorcet Winner by local voting rule is elected
– Whenever there exists an alternative that is Global 

Condorcet Winner, the alternative will be elected  



  

Summary
● Paradox of Multiple Elections
● Compact Preference representation

– CP-nets
– Goal based representation language

● Possible Approaches to Social Choice in 
Combinatorial Domains
– Combinatorial Voting, (Borda Rule and Prioritized 

Goals)
– Sequential Voting 

● Two Basic Results



  

Thanks for your attention!
Any questions?
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